Emotion Recognition using Fuzzy K-Means from Oriya Speech
نویسندگان
چکیده
Communication will be intelligible when conveyed message is interpreted in right-minded. Unfortunately, the rightminded interpretation of communicated message is possible for human-human communication but it’s laborious for humanmachine communication. It is due to the inherently blending of non-verbal contents such as emotion in vocal communication which leads to difficulty in human-machine interaction. In this research paper we have performed experiment to recognize emotions like anger, sadness, astonish, fear, happiness and neutral using fuzzy K-Means algorithm from Oriya elicited speech collected from 35 Oriya speaking people aged between 2258 years belonging to different provinces of Orissa. We have achieved the accuracy of 65.16% in recognizing above six mentioned emotions by incorporating mean pitch, first two formants, jitter, shimmer and energy as feature vectors for this research work. Emotion recognition has many vivid applications in different domains like call centers, spoken tutoring systems, spoken dialogue research, human-robotic interfaces etc. KeywordsEmotion recognition, pitch, formant, jitter, shimmer, energy, Fuzzy K-Means.
منابع مشابه
Fuzzy Clustering Approach Using Data Fusion Theory and its Application To Automatic Isolated Word Recognition
In this paper, utilization of clustering algorithms for data fusion in decision level is proposed. The results of automatic isolated word recognition, which are derived from speech spectrograph and Linear Predictive Coding (LPC) analysis, are combined with each other by using fuzzy clustering algorithms, especially fuzzy k-means and fuzzy vector quantization. Experimental results show that the...
متن کاملSpeech Emotion Recognition Using Scalogram Based Deep Structure
Speech Emotion Recognition (SER) is an important part of speech-based Human-Computer Interface (HCI) applications. Previous SER methods rely on the extraction of features and training an appropriate classifier. However, most of those features can be affected by emotionally irrelevant factors such as gender, speaking styles and environment. Here, an SER method has been proposed based on a concat...
متن کاملA Database for Automatic Persian Speech Emotion Recognition: Collection, Processing and Evaluation
Abstract Recent developments in robotics automation have motivated researchers to improve the efficiency of interactive systems by making a natural man-machine interaction. Since speech is the most popular method of communication, recognizing human emotions from speech signal becomes a challenging research topic known as Speech Emotion Recognition (SER). In this study, we propose a Persian em...
متن کاملClassification of emotional speech using spectral pattern features
Speech Emotion Recognition (SER) is a new and challenging research area with a wide range of applications in man-machine interactions. The aim of a SER system is to recognize human emotion by analyzing the acoustics of speech sound. In this study, we propose Spectral Pattern features (SPs) and Harmonic Energy features (HEs) for emotion recognition. These features extracted from the spectrogram ...
متن کاملSpeech Emotion Recognition Based on Power Normalized Cepstral Coefficients in Noisy Conditions
Automatic recognition of speech emotional states in noisy conditions has become an important research topic in the emotional speech recognition area, in recent years. This paper considers the recognition of emotional states via speech in real environments. For this task, we employ the power normalized cepstral coefficients (PNCC) in a speech emotion recognition system. We investigate its perfor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010